Excitación (magnética) - Excitation (magnetic)

Un generador eléctrico o motor eléctrico consiste en un rotor que gira en un campo magnético . El campo magnético puede ser producido por imanes permanentes o por bobinas de campo . En el caso de una máquina con bobinas de campo, debe fluir una corriente en las bobinas para generar el campo; de lo contrario, no se transfiere energía hacia o desde el rotor. El proceso de generar un campo magnético por medio de una corriente eléctrica se llama excitación . Las bobinas de campo producen la forma más flexible de regulación y desregulación del flujo magnético, pero a expensas del flujo de corriente eléctrica. Existen topologías híbridas, que incorporan tanto imanes permanentes como bobinas de campo en la misma configuración. La excitación flexible de una máquina eléctrica giratoria se emplea mediante técnicas de excitación sin escobillas o mediante la inyección de corriente mediante escobillas de carbón (excitación estática).

Un alternador de CA de central eléctrica de accionamiento directo de 100 kVA con un generador excitador accionado por correa independiente, fecha c. 1917.

Excitación en generadores

A la izquierda se muestra un generador de CC de bobinado en derivación autoexcitado, y a la derecha se muestra un generador de CC de magneto con imanes de campo permanentes. La salida del generador de bobinado en derivación varía con el consumo de corriente, mientras que la salida del magneto es estable independientemente de las variaciones de carga.
Un generador de CC excitado por separado con imanes de campo bipolar. Los generadores de excitación separada como este se utilizan comúnmente para plantas de transmisión de energía a gran escala. El generador más pequeño puede ser un magneto con imanes de campo permanentes u otro generador autoexcitado.
Una bobina de campo puede conectarse en derivación, en serie o en combinación con el inducido de una máquina de CC (motor o generador).

Para una máquina que utiliza bobinas de campo, como es el caso en la mayoría de los grandes generadores, el campo debe establecerse mediante una corriente para que el generador produzca electricidad. Aunque parte de la salida del propio generador se puede utilizar para mantener el campo una vez que se pone en marcha, se necesita una fuente de corriente externa para arrancar el generador. En cualquier caso, es importante poder controlar el campo ya que esto mantendrá el voltaje del sistema.

Principio del amplificador

A excepción de los generadores de imanes permanentes, un generador produce un voltaje de salida proporcional al campo magnético, que es proporcional a la corriente de excitación; si no hay corriente de excitación no hay voltaje.

Por tanto, una pequeña cantidad de energía suministrada como corriente de campo puede controlar una gran cantidad de energía generada y puede usarse para modularla. Este principio es muy útil para el control de voltaje: si el voltaje de salida del sistema es menor que el deseado, se puede aumentar la corriente de excitación; si el voltaje de salida es alto, se puede reducir la excitación. Un condensador síncrono funciona según el mismo principio, pero no hay una entrada de energía de "motor primario"; sin embargo, la inercia rotacional significa que puede enviar o recibir energía durante cortos períodos de tiempo. Para evitar daños a la máquina debido a cambios de corriente erráticos, a menudo se utiliza un generador de rampa. Por tanto, un generador puede considerarse un amplificador:

Excitación separada

Alternador de grupo electrógeno diesel de 1930, con dínamo de excitación arriba

Para generadores grandes o antiguos, es habitual que se alimente una dínamo excitadora separada en paralelo con el generador de energía principal . Se trata de una pequeña dínamo de imán permanente o excitada por batería que produce la corriente de campo para el generador más grande.

Autoexcitación

Los generadores modernos con bobinas de campo suelen ser autoexcitados ; es decir, parte de la potencia de salida del rotor se utiliza para alimentar las bobinas de campo. El hierro del rotor retiene un grado de magnetismo residual cuando se apaga el generador. El generador se pone en marcha sin carga conectada; el campo débil inicial induce una corriente débil en las bobinas del rotor, que a su vez crea una corriente de campo inicial, aumentando la intensidad del campo, aumentando así la corriente inducida en el rotor, y así sucesivamente en un proceso de retroalimentación hasta que la máquina "se acumula" a plena tensión.

Comenzando

Los generadores autoexcitados deben arrancarse sin ninguna carga externa conectada. La carga externa hundirá la energía eléctrica del generador antes de que pueda aumentar la capacidad para generar energía eléctrica.

Campo intermitente

Si la máquina no tiene suficiente magnetismo residual para alcanzar el voltaje máximo, por lo general se toma una disposición para inyectar corriente en el rotor desde otra fuente. Puede ser una batería , una unidad doméstica que proporcione corriente continua o corriente rectificada de una fuente de energía de corriente alterna. Dado que esta corriente inicial se requiere durante un tiempo muy corto, se denomina parpadeo de campo . Incluso los grupos electrógenos portátiles pequeños pueden necesitar ocasionalmente flasheo de campo para reiniciar.

La resistencia de campo crítica es la resistencia máxima del circuito de campo para una velocidad determinada con la que se excitaría el generador de derivación. El generador de derivación acumulará voltaje solo si la resistencia del circuito de campo es menor que la resistencia de campo crítica. Es una tangente a las características de circuito abierto del generador a una velocidad dada.

Excitación sin escobillas

La excitación sin escobillas crea el flujo magnético en el rotor de las máquinas eléctricas sin necesidad de escobillas de carbón. Por lo general, se utiliza para reducir los costos de mantenimiento regular y para reducir el riesgo de incendio de matorrales. Fue desarrollado en la década de 1950, como resultado de los avances en los dispositivos semiconductores de alta potencia . El concepto era utilizar un rectificador de diodo giratorio en el eje de la máquina síncrona para recolectar voltajes alternos inducidos y rectificarlos para alimentar el devanado de campo del generador.

Históricamente, la excitación sin escobillas carecía de la desregulación de flujo rápido, que ha sido un gran inconveniente. Sin embargo, han surgido nuevas soluciones. Los circuitos giratorios modernos incorporan componentes de desexcitación activa en el eje, extendiendo el puente de diodos pasivos. Además, sus desarrollos recientes en comunicaciones inalámbricas de alto rendimiento han logrado topologías totalmente controladas en el eje, como los rectificadores de tiristores y las interfaces de chopper.

Referencias

  • Tecnología eléctrica - II por BL Thereja
  • Máquinas eléctricas - I de UA Bakshi, VU Bakshi

Ver también