Sentido (biología molecular) - Sense (molecular biology)

En biología molecular y genética , el sentido de una molécula de ácido nucleico , en particular de una hebra de ADN o ARN , se refiere a la naturaleza de las funciones de la hebra y su complemento al especificar una secuencia de aminoácidos . Dependiendo del contexto, el sentido puede tener significados ligeramente diferentes. Por ejemplo, la hebra de ADN de sentido negativo es equivalente a la hebra molde, mientras que la hebra de sentido positivo es la hebra no molde cuya secuencia de nucleótidos es equivalente a la secuencia del transcrito de ARNm.

Sentido del ADN

Debido a la naturaleza complementaria del apareamiento de bases entre polímeros de ácido nucleico, una molécula de ADN de doble hebra estará compuesta por dos hebras con secuencias que son complementos inversos entre sí. Para ayudar a los biólogos moleculares a identificar específicamente cada hebra individualmente, las dos hebras generalmente se diferencian como la hebra "sentido" y la hebra "antisentido". Una hebra individual de ADN se denomina de sentido positivo (también positivo (+) o simplemente sentido ) si su secuencia de nucleótidos corresponde directamente a la secuencia de una transcripción de ARN que se traduce o se puede traducir a una secuencia de aminoácidos (siempre que cualquier las bases de timina en la secuencia de ADN se reemplazan con bases de uracilo en la secuencia de ARN). La otra hebra de la molécula de ADN de doble hebra se denomina de sentido negativo (también negativo (-) o antisentido ), y es complementaria inversa tanto a la hebra de sentido positivo como a la transcripción de ARN. En realidad, es la hebra antisentido la que se utiliza como plantilla a partir de la cual las ARN polimerasas construyen la transcripción de ARN, pero el emparejamiento de bases complementarias mediante el cual se produce la polimerización de ácidos nucleicos significa que la secuencia de la transcripción de ARN se verá idéntica a la hebra con sentido, aparte del uso de la transcripción de ARN de uracilo en lugar de timina.

A veces, las frases hebra codificante y hebra molde se encuentran en lugar de sentido y antisentido, respectivamente, y en el contexto de una molécula de ADN de doble hebra, el uso de estos términos es esencialmente equivalente. Sin embargo, no siempre es necesario que la cadena codificadora / con sentido contenga un código que se utilice para fabricar una proteína; pueden transcribirse tanto ARN codificantes de proteínas como no codificantes .

Los términos "sentido" y "antisentido" son relativos únicamente a la transcripción de ARN particular en cuestión, y no a la cadena de ADN en su conjunto. En otras palabras, cualquier hebra de ADN puede servir como hebra sentido o antisentido. La mayoría de los organismos con genomas suficientemente grandes hacen uso de ambas hebras, y cada hebra funciona como hebra plantilla para diferentes transcripciones de ARN en diferentes lugares a lo largo de la misma molécula de ADN. En algunos casos, las transcripciones de ARN se pueden transcribir en ambas direcciones (es decir, en cualquier hebra) a partir de una región promotora común , o se pueden transcribir desde dentro de los intrones de cualquiera de las hebras (ver "ambisentido" más adelante).

ADN antisentido

La cadena de ADN sentido se parece a la transcripción del ARN mensajero (ARNm) y, por lo tanto, se puede usar para leer la secuencia de codones esperada que finalmente se usará durante la traducción (síntesis de proteínas) para construir una secuencia de aminoácidos y luego una proteína. Por ejemplo, la secuencia "ATG" dentro de una hebra de ADN con sentido corresponde a un codón "AUG" en el ARNm, que codifica el aminoácido metionina . Sin embargo, la cadena con sentido del ADN en sí misma no se usa como molde para el ARNm; es la hebra antisentido de ADN la que sirve como fuente para el código de la proteína, porque, con bases complementarias a la hebra con sentido de ADN, se utiliza como plantilla para el ARNm. Dado que la transcripción da como resultado un producto de ARN complementario a la hebra molde de ADN, el ARNm es complementario a la hebra antisentido de ADN.

Esquema que muestra cómo las cadenas de ADN antisentido pueden interferir con la traducción de proteínas.

Por lo tanto, un triplete de bases 3′-TAC-5 ′ en la hebra antisentido del ADN (complementario al 5′-ATG-3 ′ de la hebra codificante del ADN) se usa como plantilla que da como resultado un 5′-AUG-3 ′ triplete de bases en el ARNm. La hebra de ADN sentido tendrá el triplete ATG, que se parece al triplete de ARNm AUG, pero no se usará para producir metionina porque no se usará directamente para producir ARNm. La cadena de ADN con sentido se llama cadena "con sentido" no porque se usará para producir proteínas (no lo será), sino porque tiene una secuencia que corresponde directamente a la secuencia del codón de ARN. Según esta lógica, la propia transcripción de ARN a veces se describe como "sentido".

Ejemplo con ADN bicatenario

Cadena de ADN 1: cadena antisentido (transcrita a) → cadena de ARN (sentido)
Cadena de ADN 2: cadena de sentido

Algunas regiones dentro de una molécula de ADN de doble hebra codifican genes , que generalmente son instrucciones que especifican el orden en el que se ensamblan los aminoácidos para producir proteínas, así como secuencias reguladoras, sitios de empalme , intrones no codificantes y otros productos génicos . Para que una célula utilice esta información, una hebra del ADN sirve como plantilla para la síntesis de una hebra complementaria de ARN . La hebra de ADN transcrita se denomina hebra molde, con secuencia antisentido, y la transcripción de ARNm que se produce a partir de ella se dice que es una secuencia con sentido (el complemento de antisentido). También se dice que la hebra de ADN no transcrita, complementaria a la hebra transcrita, tiene secuencia con sentido; tiene la misma secuencia de sentido que la transcripción de ARNm (aunque las bases T en el ADN están sustituidas por bases U en el ARN).

3′CGCTATAGCGTTT 5 ′ Cadena antisentido de ADN (plantilla / no codificante) Se utiliza como plantilla para la transcripción.
5′GCGATATCGCAAA 3 ′ Cadena con sentido de ADN (sin plantilla / codificación) Complementario a la hebra de la plantilla.
5′GCGAUAUCGCAAA 3 ′ transcripción del sentido del ARNm Cadena de ARN que se transcribe a partir de la cadena no codificante (plantilla / antisentido). Nota 1 : Excepto por el hecho de que todas las timinas ahora son uracilos ( T → U ), es complementaria a la cadena de ADN no codificante (plantilla / antisentido) e idéntica a la cadena de ADN codificante (sin plantilla / sentido).
3′CGCUAUAGCGUUU 5 ′ transcripción antisentido de ARNm Cadena de ARN que se transcribe a partir de la cadena codificante (sin plantilla / con sentido). Nota: Excepto por el hecho de que todas las timinas ahora son uracilos ( T → U ), es complementaria a la hebra de ADN codificante (sin plantilla / sentido) e idéntica a la hebra de ADN no codificante (plantilla / antisentido).

Los nombres asignados a cada hebra en realidad dependen de la dirección en la que se escribe la secuencia que contiene la información de las proteínas (la información de "sentido"), no de qué hebra se representa como "en la parte superior" o "en la parte inferior" (que es arbitrario). La única información biológica que es importante para etiquetar las cadenas son las ubicaciones relativas del grupo terminal 5 'fosfato y el grupo terminal 3' hidroxilo (en los extremos de la cadena o secuencia en cuestión), porque estos extremos determinan la dirección de la transcripción y traducción. Una secuencia escrita 5′-CGCTAT-3 ′ es equivalente a una secuencia escrita 3′-TATCGC-5 ′ siempre que se indiquen los extremos 5 ′ y 3 ′. Si los extremos no están etiquetados, la convención es asumir que ambas secuencias están escritas en la dirección 5′-a-3 ′. La "hebra de Watson" se refiere a la hebra superior de 5′ a 3 ′ (5 ′ → 3 ′), mientras que la "hebra de Crick" se refiere a la hebra inferior de 5′ a 3 ′ (3 ′ ← 5 ′). Tanto las hebras de Watson como las de Crick pueden ser hebras con sentido o antisentido, según el producto genético específico elaborado a partir de ellas.

Por ejemplo, la notación "YEL021W", un alias del gen URA3 utilizado en la base de datos del Centro Nacional de Información Biotecnológica (NCBI), denota que este gen se encuentra en el marco de lectura abierto 21 (ORF) del centrómero del brazo izquierdo ( L) del cromosoma de levadura (Y) número V (E), y que la cadena de codificación de expresión es la cadena de Watson (W). "YKL074C" denota el 74º ORF a la izquierda del centrómero del cromosoma XI y que la hebra codificante es la hebra Crick (C). Otro término confuso que se refiere a las cadenas "Más" y "Menos" también se usa ampliamente. Ya sea que la hebra sea con sentido (positivo) o antisentido (negativo), la secuencia de consulta predeterminada en la alineación de NCBI BLAST es la hebra "Plus".

Ambisense

Se dice que un genoma monocatenario que se usa tanto en sentido positivo como en sentido negativo es ambisentido . Algunos virus tienen genomas ambisentido. Los bunyavirus tienen tres fragmentos de ARN monocatenario (ssRNA), algunos de los cuales contienen secciones de sentido positivo y negativo; Los arenavirus también son virus ssRNA con un genoma ambisentido, ya que tienen tres fragmentos que son principalmente de sentido negativo excepto por parte de los extremos 5 'de los segmentos grandes y pequeños de su genoma.

ARN antisentido

Una secuencia de ARN que es complementaria a una transcripción de ARNm endógeno a veces se denomina " ARN antisentido ". En otras palabras, es una hebra no codificante complementaria a la secuencia codificante del ARN; esto es similar al ARN viral de sentido negativo. Cuando el ARNm forma un dúplex con una secuencia de ARN antisentido complementaria, se bloquea la traducción. Este proceso está relacionado con la interferencia del ARN . Las células pueden producir moléculas de ARN antisentido de forma natural, llamadas microARN , que interactúan con moléculas de ARNm complementarias e inhiben su expresión . El concepto también se ha explotado como una técnica de biología molecular, mediante la introducción artificial de un transgén que codifica el ARN antisentido con el fin de bloquear la expresión de un gen de interés. Puede usarse ARN antisentido marcado de forma radiactiva o fluorescente para mostrar el nivel de transcripción de genes en varios tipos de células.

Algunos tipos estructurales antisentido alternativos se han aplicado experimentalmente como terapia antisentido . En los Estados Unidos, la Administración de Drogas y Alimentos (FDA) ha aprobado los oligonucleótidos antisentido de fosforotioato fomivirsen (Vitravene) y mipomersen (Kynamro) para uso terapéutico en humanos.

Sentido de ARN en virus

En virología , el término "sentido" tiene un significado ligeramente diferente. Se puede decir que el genoma de un virus de ARN es de sentido positivo , también conocido como "cadena más", o de sentido negativo , también conocido como "cadena menos". En la mayoría de los casos, los términos "sentido" y "hebra" se usan indistintamente, haciendo que términos como "hebra positiva" sean equivalentes a "sentido positivo" y "hebra más" equivalentes a "sentido positivo". Si un genoma viral es de sentido positivo o negativo se puede utilizar como base para clasificar los virus.

Sentido positivo

De sentido positivo ( 5 ' -a-- 3' ) virales significa ARN que una secuencia de ARN viral en particular puede ser directamente traducido en proteínas virales (por ejemplo, los necesarios para la replicación viral). Por lo tanto, en los virus de ARN de sentido positivo, el genoma del ARN viral puede considerarse ARNm viral y puede ser traducido inmediatamente por la célula huésped. A diferencia del ARN de sentido negativo, el ARN de sentido positivo tiene el mismo sentido que el ARNm. Algunos virus (por ejemplo, Coronaviridae ) tienen genomas de sentido positivo que pueden actuar como ARNm y usarse directamente para sintetizar proteínas sin la ayuda de un intermedio de ARN complementario. Debido a esto, estos virus no necesitan tener una ARN polimerasa empaquetada en el virión ; la ARN polimerasa será una de las primeras proteínas producidas por la célula huésped, ya que es necesaria para que el genoma del virus se replique.

Sentido negativo

El ARN viral de sentido negativo (3 'a 5') es complementario del ARNm viral, por lo que un ARN de sentido positivo debe ser producido por una ARN polimerasa dependiente de ARN a partir de él antes de la traducción. Como el ADN, el ARN de sentido negativo tiene una secuencia de nucleótidos complementaria al ARNm que codifica; también como el ADN, este ARN no se puede traducir directamente en proteína. En cambio, primero debe transcribirse en un ARN de sentido positivo que actúa como un ARNm. Algunos virus (por ejemplo, los virus de la influenza ) tienen genomas de sentido negativo y, por lo tanto, deben llevar una ARN polimerasa dentro del virión.

Oligonucleótidos antisentido

El silenciamiento de genes se puede lograr introduciendo en las células un "oligonucleótido antisentido" corto que sea complementario a una diana de ARN. Este experimento fue realizado por primera vez por Zamecnik y Stephenson en 1978 y sigue siendo un enfoque útil, tanto para experimentos de laboratorio como potencialmente para aplicaciones clínicas ( terapia antisentido ). Varios virus, como los virus de la influenza, el virus respiratorio sincitial (RSV) y el coronavirus del SARS (SARS-CoV), se han dirigido al uso de oligonucleótidos antisentido para inhibir su replicación en las células huésped.

Si el oligonucleótido antisentido contiene un tramo de ADN o un imitador de ADN (ADN fosforotioato, 2'F-ANA u otros), puede reclutar ARNasa H para degradar el ARN diana. Esto hace que el mecanismo de silenciamiento génico sea catalítico. El ARN bicatenario también puede actuar como un agente antisentido catalítico dependiente de enzimas a través de la vía ARNi / ARNip , que implica el reconocimiento del ARNm diana a través del emparejamiento de cadenas sentido-antisentido seguido de la degradación del ARNm diana por el complejo de silenciamiento inducido por ARN (RISC). El sistema hok / sok del plásmido R1 proporciona otro ejemplo más de un proceso de regulación antisentido dependiente de enzima a través de la degradación enzimática del dúplex de ARN resultante.

Otros mecanismos antisentido no dependen de la enzima, pero implican el bloqueo estérico de su ARN diana (por ejemplo, para evitar la traducción o para inducir un corte y empalme alternativo). Los mecanismos antisentido de bloqueo estérico a menudo usan oligonucleótidos que están muy modificados. Dado que no hay necesidad de reconocimiento de RNasa H, esto puede incluir químicas tales como 2'-O-alquilo, ácido peptídico nucleico (PNA), ácido nucleico bloqueado (LNA) y oligómeros morfolino .

Ver también

Referencias