Radiación ciclotrónica - Cyclotron radiation

La radiación de ciclotrón es una radiación electromagnética emitida por partículas cargadas aceleradas desviadas por un campo magnético . La fuerza de Lorentz sobre las partículas actúa perpendicularmente a las líneas del campo magnético y al movimiento de las partículas a través de ellas, creando una aceleración de las partículas cargadas que hace que emitan radiación como resultado de la aceleración que experimentan al girar en espiral alrededor de las líneas del campo magnético.

El nombre de esta radiación deriva del ciclotrón , un tipo de acelerador de partículas utilizado desde la década de 1930 para crear partículas altamente energéticas para su estudio. El ciclotrón hace uso de las órbitas circulares que exhiben las partículas cargadas en un campo magnético uniforme. Además, el período de la órbita es independiente de la energía de las partículas, lo que permite que el ciclotrón funcione a una frecuencia determinada . La radiación de ciclotrones es emitida por todas las partículas cargadas que viajan a través de campos magnéticos, no solo por las de los ciclotrones. La radiación ciclotrónica del plasma en el medio interestelar o alrededor de los agujeros negros y otros fenómenos astronómicos es una fuente importante de información sobre campos magnéticos distantes.

Propiedades

La potencia (energía por unidad de tiempo) de la emisión de cada electrón se puede calcular:

donde E es la energía, t es el tiempo, es la sección transversal de Thomson (total, no diferencial), B es la intensidad del campo magnético, v es la velocidad perpendicular al campo magnético, c es la velocidad de la luz y es la permeabilidad de la luz libre. espacio .

La radiación de ciclotrón tiene un espectro con su pico principal a la misma frecuencia fundamental que la órbita de la partícula y armónicos en factores integrales más altos. Los armónicos son el resultado de imperfecciones en el entorno de emisión real, que también crean un ensanchamiento de las líneas espectrales . La fuente más obvia de ensanchamiento de línea son las faltas de uniformidad en el campo magnético; a medida que un electrón pasa de un área del campo a otra, su frecuencia de emisión cambiará con la fuerza del campo. Otras fuentes de ensanchamiento incluyen el ensanchamiento por colisión ya que el electrón invariablemente fallará en seguir una órbita perfecta, distorsiones de la emisión causadas por interacciones con el plasma circundante y efectos relativistas si las partículas cargadas son suficientemente energéticas. Cuando los electrones se mueven a velocidades relativistas, la radiación de ciclotrón se conoce como radiación de sincrotrón .

El retroceso experimentado por una partícula que emite radiación de ciclotrón se denomina reacción de radiación . La reacción de radiación actúa como una resistencia al movimiento en un ciclotrón; y el trabajo necesario para superarlo es el principal coste energético de acelerar una partícula en un ciclotrón. Los ciclotrones son excelentes ejemplos de sistemas que experimentan una reacción de radiación.

Ejemplos de

En el contexto de la energía de fusión magnética , las pérdidas de radiación del ciclotrón se traducen en un requisito de una densidad mínima de energía del plasma en relación con la densidad de energía del campo magnético.

La radiación de ciclotrón probablemente se produciría en una explosión nuclear a gran altitud . Los rayos gamma producidos por la explosión ionizarían átomos en la atmósfera superior y esos electrones libres interactuarían con el campo magnético de la Tierra para producir radiación ciclotrónica en forma de pulso electromagnético (EMP). Este fenómeno es motivo de preocupación para los militares, ya que el EMP puede dañar los equipos electrónicos de estado sólido .

Ver también

Referencias